Trig 1 Review B

1. The pendulum of a grandfather clock swings back and forth with a periodic motion that can be represented by a trig function. At rest, the pendulum is 20 cm above the base. The highest point of the swing is 26 cm above the base, and it takes 2 seconds for a complete swing back and forth.
a) Write a cosine function if the pendulum is released from the highest point.

$$
A m p=3, \quad P S=0, V . D=23 \quad y=3 \cos (2 \pi x)+23
$$

$$
\text { Period }=1 \Rightarrow \frac{2 \pi}{b}=1 \quad \therefore b=2 \pi
$$

b) How high above the base is the pendulum 0.3 seconds after it starts to swing?

$$
y=3 \cos [2 \pi(0,3)]+23 \quad=22.1 \mathrm{~cm}
$$

c) After how many seconds will the pendulum be exactly at the height of 21 cm above base?

$$
\left.\begin{array}{lll}
21=3 \cos (2 \pi x)+23 & 0.5-0.13=0.375 \\
\frac{-2}{3}=\cos 2 \pi x \\
2 \pi x=\cos ^{-1}\left(\frac{2}{3}\right)
\end{array}\right\} \begin{aligned}
x=\frac{0.84}{2 \pi} & 0.5+0.13=0.635
\end{aligned}
$$

Reference time
2. Graph two cycles with 9 key points: $y=3 \cos \left(\frac{1}{2} x-\frac{\pi}{4}\right)+1 \Rightarrow y=3 \cos \frac{1}{2}\left(x-\frac{\pi}{2}\right)+1$

$$
\begin{array}{ll}
\text { Amp }=3 & P s=\frac{\pi}{2} \\
\text { Period }=\frac{2 \pi}{12}=4 \pi . & v D=1
\end{array}
$$

3. Solve the equation $2 \cos ^{2} x+\cos x-1=0$ for $-\pi \leq x \leq \pi$

$$
\begin{gathered}
(2 \cos x-1)(\cos x+1)=0 \\
\downarrow \\
\cos x=\frac{1}{2} \quad \cos x=-1 \\
\downarrow \\
x_{1}=\pi \\
x_{2}=\pi-2 \pi=-\pi
\end{gathered}
$$

$$
\cos x=\frac{1}{2}
$$

$$
X_{R}=\frac{\pi}{3}
$$

$$
x_{3}=\frac{\pi}{3}
$$

4. If $\cot \theta=-\frac{3}{4}$ and $\csc \theta<0$, then what is the value of $\sin \theta$?

$$
\begin{aligned}
x_{4} & =\pi-\frac{\pi}{3} \\
& =\frac{5 \pi}{3} x
\end{aligned}
$$

$\cot \theta<0 \& \csc \theta<0$
$\therefore \theta$ in $Q 4$

$$
=\frac{-\pi}{3}
$$

$$
\begin{aligned}
& r=\sqrt{3^{2}+4^{2}} \\
&=5 \\
& \sin \theta=\frac{-4}{5}
\end{aligned}
$$

5. What is the radius of a circle if an arc length of 3 m subtends an angle of 30° on the circle?

$$
\begin{aligned}
& 30^{\circ}=\frac{\pi}{6} \quad a=r \theta \\
& 3=r\left(\frac{\pi}{6}\right)
\end{aligned} \quad r=3 \cdot \frac{6}{\pi}
$$

6. The point $(-2,-7)$ is on the terminal arm of angle θ. What is the value of θ ?

$$
\begin{aligned}
\theta_{R} & =\tan ^{-1}\left(\frac{7}{2}\right) \\
& =1.29
\end{aligned}
$$

$$
\theta=\pi+1.29
$$

$$
=4.43 \mathrm{rad}
$$

