Trig 1 Review A

1. A Ferris wheel has a radius of 18 m and a centre C which is 20 m above the ground. It rotates once every 30 seconds. A platform allows a passenger to get on the wheel at a point P which is 20 m above the ground.

a) If the ride begins at point P, when the time is $t=0$ seconds, determine a sine function that gives the passenger's height, h metres, above the ground as a function of t . $a \mathrm{mp}=18$
v.D. $=20$
period $=30$
$\frac{2 \pi}{b}=30, b=\frac{\pi}{15}$
$y=18 \sin \left(\frac{\pi}{15} x\right)+20$

b) What is the height of this passenger 10 seconds after it starts to rotate?

$$
\begin{aligned}
y=18 \sin \left(\frac{\pi}{15}(10)\right)+20=18 \sin \frac{2 \pi}{3}+20 & =18\left(\frac{\sqrt{3}}{2}\right)+20 \\
& =9 \sqrt{3}+20 \mathrm{~m}
\end{aligned}
$$

c) After how many seconds will the person be exactly at the height of 30 m above ground?

$$
\begin{array}{ll}
30=19 \sin \left(\frac{\pi}{15} x\right)+20 & \sin A=\frac{5}{9} \\
\frac{10}{18}=\sin \frac{\pi}{15} x & A R=0.589 \\
\frac{5}{9}=\sin \frac{\pi}{15} x & A 1=0.589, A_{2}=\pi-0.589 \\
\text { let } \frac{\pi}{15} x=A & =0.589 \cdot \frac{15}{\pi}, x_{2}=(\pi-0.589) \cdot \frac{15}{\pi} \\
& =2.8125
\end{array}
$$

d) Graph two cycles with 9 key points

2. Write a cosine function for the graph shown below.

$$
\begin{aligned}
& \text { amp }=4 \\
& \text { period }=\frac{4}{3} \pi \\
& \frac{2 \pi}{b}=\frac{4}{3} \pi \quad b=\frac{2 \pi}{\frac{4}{3} \pi}=z \cdot \frac{3}{42}=\frac{3}{2} \\
& V D=8 \\
& \text { PS }=\frac{\pi}{6} \\
& y=4 \cos \left(\frac{3}{2}\left(x-\frac{\pi}{6}\right)\right)+8
\end{aligned}
$$

3. Solve the equation $2 \sin x=-1.234$ for $-3 \pi \leq x \leq \pi$

Case 1

$$
\begin{aligned}
& \sin x=-\frac{1.234}{2} \\
& \angle_{R}=\sin ^{-1}\left(\frac{1.23^{4}}{2}\right) \\
& c_{R}=0.66 \\
& x_{1}=\pi+0.66=3.81^{*} \text { both } \\
& x_{2}=2 \pi-0.66=5.62 \text { there }\left._{\text {then }}\right|^{\text {mon }}
\end{aligned} x x
$$

Co-terminal angles.

$$
\begin{aligned}
& x_{3}=381-2 \pi=-2.48 \\
& x_{4}=5.62-2 \pi=-0.66 \\
& x_{5}=-2.48-2 \pi=-8.76 \\
& x_{6}=-0.66-2 \pi=-6.95
\end{aligned}
$$

4. Determine the number of solutions for $(a \sin x+a)(b \cos x-c)=0$ for $0 \leq x \leq 2 \pi$, if $1<a<b<c$
$a \sin x=-a$
$b \cos x=c$

$$
\begin{gathered}
\sin x=-1 \\
x=\frac{3 \pi}{2}
\end{gathered}
$$

$$
\cos x=\frac{c}{b}
$$

$$
\because c>b
$$

$$
\therefore \frac{c}{b}>1
$$

$$
\therefore \text { no solution }
$$

5. The terminal arm of angle θ in standard position passes through the point $(-2,5)$. Determine the value of $\sec \theta$.

$$
\begin{aligned}
& t=\sqrt{5^{2}+2^{2}}=\sqrt{25+4}=\sqrt{29} \\
& \sec \theta=\frac{1}{\cos \theta}=\frac{\frac{1}{-2}}{-\sqrt{29}}=-\frac{\sqrt{29}}{2}
\end{aligned}
$$

