\qquad

Learning Outcomes Covered:
5E: I can add polynomials.

CONTENT Assessment Questions:

1. Use algebra tiles to model each sum. Sketch your tile model. Record your answer symbolically.
a) $(-4 h+1)+(6 h+3)$

b) $\left(3 y^{2}-2 y+5\right)$ 少 $\left(-y^{2}+6 y+3\right)$

$=\square \square \cap \square \begin{aligned} & \text { ROD R } \\ & 2 R 2 D\end{aligned}$
2. Add these polynomials. Use algebra tiles if it helps.
a) $(x-5)+(2 x+2)$
b) $\left(b^{2}+3 b\right)+\left(b^{2}-3 b\right)$
$=3 x-3$
$=2 b^{2}$
c) $\left(y^{2}+6 y\right)+\left(-7 y^{2}+2 y\right)$
d) $\left(5 n^{2}+5\right)+\left(-1-3 n^{2}\right)$
$=-6 y^{2}+8 y$
$=2 n^{2}+4$
e) $\left(y^{2}+6 y-5\right)+\left(-7 y^{2}+2 y-2\right)$
f) $\left(-3 d^{2}+2\right)+\left(-2-7 d^{2}+d\right)$
$=-6 y^{2}+8 y-7$
$=-10 d^{2}+d$
\qquad
3. Add these polynomials. Use algebra tiles if it helps.
a)

$$
\begin{array}{r}
(7 x+3) \\
+(-2 x-6) \\
\hline 5 x-3
\end{array}
$$

b) $\left(3 x^{2}-4 x+1\right)$

$$
+\frac{\left(-2 x^{2}+4 x+1\right)}{x^{2}+2}
$$

4. a) For each shape below, write the perimeter as a sum of polynomials and in simplest form.
i)

$(2 n+2)+(2 n+2)+(n+1)+(n+1)$
$=6 n+6$
ii)

$$
(3 p+4)+(3 p+4)+(3 p+4)
$$

$=99+12$

CURRICULAR COMPETENCIES Questions:

1. The sum of two polynomials is $4 r+5-3 r^{2}$. One polynomial is $-8-2 r^{2}+2 r$; what is the other polynomial? Explain how you found your answer.

$$
\begin{aligned}
& \left(4 r+5-3 r^{2}\right)=\left(-8-2 r^{2}+2 r\right)+\left(13-r^{2}+2 r\right) \\
& \begin{array}{c}
-8+\square=5 \\
\square=13
\end{array}\left\{\begin{array}{c}
-2 r^{2}+\square=-3 r^{2} \\
\square=-r^{2}
\end{array}\right\} \begin{array}{c}
2 r+\square=42 \\
\square=2 r
\end{array}
\end{aligned}
$$

ONGOING LEARNING ACTIVITIES:
CORE: Page 228: Curricular Competencies: 4, 12, 14, 16

