\qquad

Section 5.1 - Modelling Polynomials

Page 1 of 2

Learning Outcomes Covered:

5A: I can recognize the different parts of a polynomial.
5B: I can describe and classify polynomials.
5C: I can use algebra tiles to represent a polynomial.

CONTENT Assessment Questions:

1. Identify the coefficient(s), variable(s), and constant of each of the following polynomials. Also name them.

	Algebraic expression	Coefficient(s)	Variable(s)	Constant	Polynomial Name
a)	$-8 y$	-8	y		Monomial
b)	$4-11 w$	-11	W	4	Bmomin)
c)	$-2 b^{2}-b+10$	$-2,-1$	b	10	Trinumia

2. Use algebra tiles to model each polynomial. Sketch the tiles.
b) $2 x-1$

d) $v^{2}-4 v$
a) $-5+y^{2}$

c) $-3 a^{2}-2 a+1$

\qquad
Section 5.1 - Modelling Polynomials
CURRICULAR COMPETENCIES Questions:
3. From the following six questions, identify the equivalent polynomials. Show how you know either using words or pictures.
(RA)
a) $-h^{2}-3+4 h$
b) $-3+4 h-h^{2}$
c) $5 m-3$
d) $-2+y^{2}+5 x y$
e) $y^{2}+5 x y-2$
f) $-3+5 m$
a) \&b),
c) \&f,
d) 8 e)
are equivalent pairs
because each term in those polynomials are the
same. The only difference in those polynomials is the order in which they add or subtract.
4. Write a polynomial to match the following conditions.
(US)
a) 2 terms, degree 1 , with a constant term of 4

b) 3 terms, degree 2 , with the coefficient on the 2 nd degree term -2

$$
e x .-2 x^{2}+3 x-1,-2 x^{2}-5 x+3, \ldots
$$

ONGOING LEARNING ACTIVITIES:
CORE: Page 214: Curricular Competencies: 10, 15, 16, 18

