Finance 2 Homework

1. Calculate how much interest you would earn on a deposit of $\$ 8000$ invested at 2.5\%, compounded annually for a term of 5 years.

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n} n \\
& =8000\left(1+\frac{0.025}{1}\right)^{5} \quad 9051.27-8000 \\
& =\$ 9051.27 \quad=\$ 1051.27
\end{aligned}
$$

2. An investment offers a rate of 2.8% per annum, compounded annually. Use the rule of 72 to determine about how long it will take for the value to double.

$$
72 \div 2.8=25.7 \text { yrs. }
$$

3. Which is the better investment over 5 years?
a) An investment that offers a rate of 1.9% per annum, compounded annually
b) An investment that offers at rate of 1.75% per annum, compounded monthly Assume we invested $\$ 1000$
a) $A=1000\left(1+\frac{0.019}{1}\right)^{1 \times 5}$

$$
=\$ 1098,68
$$

option A is better.
4. The day lan was born, his grandparents deposited $\$ 10000$ into a trust account for college yielding 9% compounded quarterly. On his $18^{\text {th }}$ birthday, how much money did lan have for college? 4 times a year.

$$
\begin{aligned}
A & =10000\left(1+\frac{0.09}{4}\right)^{4 \times 18} \\
& =\$ 49631.66
\end{aligned}
$$

5. An investment opportunity of $\$ 50000$ for 10 years has two options: the first pays 7% compounded annually, the second pays 6.8% compounded monthly. Which is the better investment, and by how much?
a) $50000\left(1+\frac{0.07}{1}\right)^{10}$ $=\$ 98357.57$
b) $50000\left(1+\frac{0.068}{12}\right)^{12}$

$$
=\$ 98504.63
$$

$98504.63-98357.57=\$ 147.06$
second option is better by \$147.06
6. A couple deposits $\$ 6000$ in a savings account paying 4.5% compounded monthly. After 3 years, the credit union lowers the interest rate to 3% compounded daily. How much is in the account after 5 years?

$$
\begin{aligned}
& A_{3}=6000\left(1+\frac{0.045}{12}\right)^{12 \times 3}=\$ 6865.49 \\
& A_{5}=6865.49\left(1+\frac{0.03}{355}\right)^{355 \times 2}=\$ 7290.01
\end{aligned}
$$

7. Brad must pay $\$ 30000$ in settlement of an obligation in 3 years. How much must he deposit today at 8% compounded quarterly to have enough to pay the settlement?

$$
\begin{aligned}
& 30000=P\left(1+\frac{0.08}{4}\right)^{4 \times 3} \\
& 30000=1.268 P \\
& \div 1.268 \quad \div 1.268
\end{aligned}
$$

$$
p=\$ 23654.80
$$

