Ch. 6 to 7.3 Review 2

$$
\begin{aligned}
& t_{n}=t_{1}(r)^{n-1} \\
& 2048=\frac{1}{128}(4)^{n-1}
\end{aligned} \begin{aligned}
& 262144=4^{n-1} \\
& 4^{9}=4^{n-1} \int \begin{array}{l}
9=n-1 \\
n=10
\end{array}
\end{aligned}
$$

2. A new well produces 48000 L of water in the first month. If the volume of water pumped decreases by 6% each month, determine the total volume of water, in litres, that will be pumped from the well before it runs dry. $r=0.94$

$$
S_{\infty}=\frac{t_{1}}{1-r}=\frac{48000}{1-0.94}=800,0002
$$

3. In a geometric series, if the sum of the first 12 terms is 20475 and the common ratio is 2 , determine

$$
\begin{aligned}
& \text { the value of the first term. } \\
& S_{n}=\frac{t_{1}\left(1-r^{n}\right)}{1-r} \quad 20475=\frac{t_{1}\left(1-2^{12}\right)}{1-2} \quad \lambda-20475=-4095 t_{1} \\
& -20475=t_{1}(1-4096) \quad t_{1}=5 \\
& \text { 4. Evaluate: a) } \sum_{k=5}^{13} 3(2)^{k-2} \\
& t_{1}=3(2)^{5-2}=24 S_{q}=\frac{24\left(1-2^{9}\right)}{1-2} \\
& \text { b) } \sum_{k=1}^{\infty} \frac{1}{3^{k}} \\
& \begin{array}{cc}
t_{2}=3(2)^{6-2}=48 & 1-2 \\
=12264
\end{array} \\
& t_{1}=\frac{1}{3^{\prime}}=\frac{1}{3} \quad S_{0}=\frac{\frac{1}{3}}{1-\frac{1}{3}} \\
& r=\frac{48}{24}=2, n=13-5+1=9 \quad \left\lvert\, \begin{array}{l}
r_{2}=3^{2}=9 \\
r=\frac{1}{9} / \frac{1}{3}=\frac{1}{3}
\end{array}\right. \\
& =\frac{1}{2}
\end{aligned}
$$

5. Laura invests in a bond which pays interest at the rate of 2.5% per year compounded weekly. After 10 years the value of the bond has increased to $\$ 1267.28$. What was the original value of the bond?

$$
\left.\begin{array}{l}
A=A_{0}\left(1+\frac{\bar{c}}{n}\right)^{n t} \\
1267.28=A_{0}\left(1+\frac{0.025}{52}\right)^{52(10)} \\
1267.28=A_{0}(1.284)
\end{array}\right\} A_{0}=\$ 987.02
$$

6. Mr. H worked for SD41 for 5 years. His annual salary was $\$ 38000$ during his first year. Each year his salary increased by 2% over the previous year's salary. Suppose he was able to keep half of his salary for a house he would like to purchase that requires a down payment of $\$ 100,000$. Can he afford it?
$S_{5}=\frac{38000\left(1-1.02^{5}\right)}{1-1.02} \quad \$ 197753.53 \div 2$ His dream

$$
=\$ 197,753.53=\$ 98876.76 .
$$ is shattered

$$
\begin{aligned}
& \text { 7. Simplify: } 216^{x} \div\left(1296^{5 x-4} \times 36^{x+5}\right) \\
& \frac{\left(6^{3}\right)^{x}}{\left(6^{4}\right)^{5 x-4} \cdot\left(6^{2}\right)^{x+5}}=\frac{6^{3 x}}{6^{20 x-16} \cdot 6^{2 x+10}}=\frac{6^{3 x}}{6^{22 x-6}}=6^{-19 x+6} \\
& \text { 8. Solve: a) }\left(\frac{1}{4}\right)^{x-12}=32^{2 x+5} \\
& \begin{array}{l}
\left(2^{-2}\right)^{x-12}=\left(2^{5}\right)^{2 x+5} \\
2^{-2 x+24}=2^{10 x+25} \\
-2 x+24=10 x+25
\end{array} \quad \begin{array}{l}
-12 x=1 \\
x=\frac{-1}{12}
\end{array} \\
& \text { b) } \sqrt[4]{\frac{25^{x-1}}{125^{3 x+2}}}=5^{x}\left(625^{x-2}\right) \\
& \left(\begin{array}{rl}
\left(\frac{\left.5^{2}\right)^{x-1}}{\left(5^{3}\right)^{3 x+2}}\right)^{\frac{1}{4}}=\left(5^{x}\right)\left(5^{4}\right)^{x-2}\left\{\begin{array}{l}
5^{\frac{-7}{4} x-2}=5^{5 x-8} \\
\left(\frac{5^{2 x-2}}{5^{9 x+6}}\right)^{\frac{1}{4}}=\left(5^{x}\right)\left(5^{4 x-8}\right)
\end{array} \begin{array}{rl}
\frac{-7}{4} x-2=5 x-8 \\
\frac{-27}{4} x & =-6 \\
-27 x & =-2 x \\
\left(5^{-7 x-8}\right)^{\frac{1}{4}}=5^{5 x-8} & =\frac{24}{27}=\frac{8}{9}
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9. Graph } y=-2\left(4^{-2 x+6}\right)-1 \quad c \quad c \\
& y=4^{x} \quad y=-2\left(4^{-2(x-3)}\right) \stackrel{\downarrow}{-1} \\
& \text { HA: } y=-1 \\
& \begin{array}{c|c}
x & y \\
\hline-1 & 1 / 4 \\
\hline 0 & 1 \\
\hline 1 & 4
\end{array} \rightarrow \\
& \begin{array}{ll}
\frac{x}{-2}+3,-2 y-1 & D=x \in \mathbb{R} \\
R=y<-1
\end{array} \\
& \begin{array}{c|c}
x & y \\
\hline 3.5 & -1.5 \\
\hline 3 & -3 \\
\hline 2.5 & -9
\end{array} \\
& y \text {-int }= \\
& y=-2\left(4^{-2(0)+6}\right)-1 \\
& =-8193
\end{aligned}
$$

