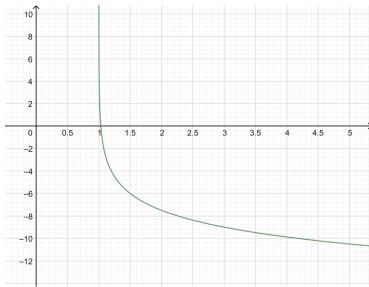
1. Evaluate without a calculator: a) 
$$\log_3 81$$
 b)  $\log_5 \sqrt{125}$  c)  $2 \log_8 512$  d)  $2 \log_x (x^5)$ 

b) 
$$\log_5 \sqrt{125}$$

d) 
$$2\log_x(x^5)$$


2. If 
$$\log_a b = 4.5$$
 and  $\log_a c = 3.7$ , then what is  $\log_a \left(\frac{b^2}{c}\right)$ ?

3. Simplify: a) 
$$\log x^{\frac{1}{2}} + \log y^{\frac{1}{2}} - \frac{1}{2} \log xy$$
 b)  $(5^{\log_5 2})(5^{\log_5 3}) - 1$  c)  $\log_x 4 + \log_x 8 - \frac{1}{4} \log_x 16$ 

- 4. If  $\log 2 = a$  and  $\log 3 = b$ , then what is  $\log 288$  in terms of a and b?
- 5. Graph  $y = -3 \log_4(2x 2) 6$ , and determine its intercept(s), domain, range and equation of the asymptote.

1. A) 4 b) 
$$\frac{3}{2}$$
 c) 6 d) 10

- 2. 5.3
- c)  $\log_x 16$ 3. A) 0 b) 5
- 4. 5a + 2b
- 5.



x-intercept:  $\left(\frac{33}{32}, 0\right)$ , Domain: x > 1, Range:  $y \in R$ , Asmptote: x = 1