7.4-7.9 Review

1. If $\$ 12250$ is invested in an account paying 9.6%, how much will be in the account at the end of 10 years if the interest is compounded continuously?

$$
\begin{aligned}
A & =A_{0} e^{k t} \\
A & =12250 e^{0.096 \times 10} \\
& =\$ 31993.28
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
\text { 2. a) Determine the inverse function of } y=3^{2 x-4}+1 \\
\begin{array}{l}
x=3^{2 y-4}+1 \\
x-1=3^{2 y-4} \\
\log (x-1)=(2 y-4) \log 3
\end{array}
\end{array}\right\} \begin{array}{l}
\frac{\log (x-1)}{\log _{3}}=2 y-4 \\
\log _{3}(x-1)=2 y-4
\end{array}\right\} \begin{aligned}
& \log _{3}(x-1)+4=2 y \\
& y=\frac{1}{2} \log _{3}(x-1)+2
\end{aligned}
$$

b) Graph the inverse function of $y=3^{2 x-4}+1$ inverse is

$$
y=\frac{1}{2} \log _{3}(x-1)+2
$$

$$
\left.\begin{array}{l|l}
x & y \\
\hline 1 / 3 & -1 \\
\hline 1 & 0 \\
\hline 3 & 1
\end{array} \rightarrow \begin{aligned}
& x+1, \frac{1}{2} y+2 \\
& x
\end{aligned} \right\rvert\, y
$$

c) Determine the intercepts) and equation of asymptote for the graph.

No $y_{\text {-int. }}$

$$
\text { VA }: \quad x=1
$$

$$
\begin{aligned}
& 0=\frac{1}{2} \log _{3}(x-1)+2 \\
& -2=\frac{1}{2} \log _{3}(x-1) \\
& -4=\log _{3}(x-1)
\end{aligned}\left\{\begin{array}{l}
3^{-4}=x-1 \\
\frac{1}{81}=x-1 \\
x=\frac{82}{81} x-\text { int }=\frac{82}{81}
\end{array}\right.
$$

3. Simplify
a) $\log _{b} x^{\log _{x} a}$

$$
=\log _{x} a \cdot \log _{b} x>=\frac{\log a}{\log b}
$$

$$
=\frac{\log a}{\log x} \cdot \frac{\log x}{\log b}=\log _{b} a
$$

4. Solve.
a) $\log _{5}(2 x-1)+\log _{5}(x-2)=1$

$$
\begin{aligned}
& \log _{5}[(2 x-1)(x-2)]=\log _{5} 5 \\
& (2 x-1)(x-2)=5 \\
& 2 x^{2}-4 x-x+2=5 \\
& 2 x^{2}-5 x-3=0 \\
& (2 x+1)(x-3)=0
\end{aligned} \quad x=
$$

$$
\begin{aligned}
& \text { b) } 2^{3 x}=5^{-x-1} \\
& \log 2^{3 x}=\log 5^{-x-1} \\
& 3 x \log 2=(-x-1) \log 5 \\
& 3 x \log 2=-x \log 5-\log 5 \\
& 3 x \log 2+x \log 5=-\log 5 \\
& x(3 \log 2+\log 5)=-\log 5 .
\end{aligned}
$$

5. If $\log _{6} x=120$, then what is $\log _{6}\left(\frac{1}{36} x\right)$?

$$
\left.\begin{array}{l}
\log _{6}\left(\frac{1}{36} x\right) \\
=\log _{6} \frac{1}{36}+\log _{6} x
\end{array}\right\}=-2 \log _{6} 6^{-2}+\log _{6} x+120 \quad-2+120
$$

6. Jimmy is making a loan of $\$ 5000$ with 5% annual interest compounded monthly to go on a summer vacation. He is able to pay back $\$ 250$ a month, how many months does it take to pay back the loan?

$$
\begin{aligned}
& 5000=\frac{250\left(1-\left(1+\frac{0.05}{12}\right)^{-n}\right)}{\frac{0.05}{12}} \\
& 0.08 \overline{3}=1-\left(1+\frac{0.05}{12}\right)^{-n}
\end{aligned}\left\{\begin{array}{l}
0.91 \overline{6}=\left(1+\frac{0.05}{12}\right)^{-n} \\
\log 0.91 \overline{6}=-n \log \left(1+\frac{0.05}{12}\right) \\
-n=\frac{\log 0.91 \overline{6}}{\log \left(1+\frac{0.05}{12}\right)}
\end{array}\right\} \begin{aligned}
& n=20.9 \\
& 21 \text { months }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \frac{\log x^{3}+\log x^{5}}{\log x^{6}-\log x^{3}} \\
& =\frac{3 \log x+5 \log x}{6 \log x-3 \log x} \\
& =\frac{8 \log x}{3 \log x}=\frac{8}{3}
\end{aligned}
$$

